Block型李代数B(q)的表示
Representations of Lie algebras B(q) of Block type
受Mathieu关于Virasoro代数Harish-Chandra模的一个著名定理的启发,我们证明了一类Block型李代数B(q)的拟有限模是最高/最低权模或者是一致有界模,其中参数q是任意非零复数。我们还给出了拟有限最高权模及不可约中间序列模的分类。特别地,我们得到,不可约中间序列模是中间序列Vir-模的非平凡扩张如果q是负整数的一半,其中Vir是与Virasoro代数同构的B(q)的子代数。
Intrigued by a well-known theorem ofMathieu's on Harish-Chandra modules over the Virasoro algebra, weshow that any quasifinite irreducible module over a class of Blocktype Lie algebras B(q) is either a highest or lowest weight module, or elsea uniformly bounded module, where the parameter q is a nonzero complexnumber. We also classify quasifinite irreducible highest weightB(q)-modules and irreducible B(q)-modules of the intermediateseries. In particular, we obtain that an irreducible B(q)-module ofthe intermediate series may be a nontrivial extension of aVir-module of the intermediate series if q is half of anegative integer, where Vir is a subalgebra of B(q) isomorphicto the Virasoro algebra.
许莹、夏春光、苏育才
数学
拟有限表示Block 型李代数Virasoro 代数拟有限表示最高权表示
Quasifinite representationsBlock type Lie algebrasVirasoro algebraQuasifinite representationshighest weight representations
许莹,夏春光,苏育才.Block型李代数B(q)的表示[EB/OL].(2012-04-06)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201204-73.点此复制
评论