基于特征空间异化重构的Winnow算法过滤网络钓鱼
Using the Winnow Algorithm based on Feature Space Alienation Reconstruction to Filter Phishing
网络钓鱼攻击日益成为网络安全的威胁,并使网络用户遭受巨大的经济损失。本文提出一种基于特征空间异化重构的Winnow算法来实现网络钓鱼的过滤。通过分析网页,提取网页的敏感特征,然后采用Winnow算法进行分类(正常网页和phishing网页)。同时通过BP神经网络修正Winnow算法的参数,进行特征空间的异化重构,完善Winnow算法的自学习功能。实验表明,该方法能够更好的实现网络钓鱼的过滤。
Phishing is increasingly becoming a threat to network security and network users suffer from huge economic losses. This paper presents a method to filter phishing using the Winnow algorithm based on feature space alienation reconstruction。It extracts sensitive features of Web pages by analyzing them, and then makes classification (normal web pages and phishing pages) using Winnow algorithm. At the same time, it makes feature space reconstruction for the alienation through amendments to Winnow algorithm parameters by BP neural network, all of which improves the Winnow algorithm self-learning function. Experiment results show that the method can achieve a better effect for phishing filter.
林文香、孙建华、陈浩
计算技术、计算机技术
网络钓鱼Winnow算法BP神经网络异化重构
PhishingWinnow algorithmBP neural networklienation Reconstruction
林文香,孙建华,陈浩.基于特征空间异化重构的Winnow算法过滤网络钓鱼[EB/OL].(2010-04-22)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/201004-823.点此复制
评论