PSO-SVM在高速公路交通量预测中的应用
Forecast of Highway Traffic Volume Using PSO-SVM
在重庆政府回购租赁高速公路的背景下,研究了如何准确地预测高速公路长期交通量,从而为政府部门及高速公路投资者的投资决策提供依据。在综述了以往高速公路预测方法的基础上,论文主要考虑重庆区域经济因素对交通量增长的影响,根据高速公路交通量样本小、预测期长、受经济因素影响等特点,选用了支持向量机回归来进行多因素单目标的预测。在预测过程中,为了提高精度,首先将所搜集的经济因素进行主成分分析,对指标进行了约减;然后用PSO方法对支持向量机参数进行了优化。
In the background of the government repurchase the toll highway, this paper study how to forecast the traffic volume precisely.First recall the articles about road forecasting. Then due to the character of the samples, SVM(support vector machine) is chosen to deal with this problem. And ,in order to forecast the traffic volume accurately, firstly, the author reduces the economic factors by principal components analysis (PCA).Secondly, Particle swarm optimization(PSO) is used to looking for the best parameters for the support vector machine(SVM) .
李玲玲、肖智
交通运输经济公路运输工程自动化技术、自动化技术设备
高速公路交通量预测支持向量机主成分PSO
Highway traffic volumeForecastSVMPCAPSO
李玲玲,肖智.PSO-SVM在高速公路交通量预测中的应用[EB/OL].(2009-07-22)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/200907-490.点此复制
评论