基于人工智能的移动医疗健康助手设计
esign of Mobile Medical Health Assistant Based on Artificial Intelligence
本课题基于移动应用开发并结合深度学习,Android平台为客户端,深度学习服务器提供图像识别进行开发,系统的功能主体为问诊以及舌诊,问诊功能主要由决策树模型实现,阶段问诊结果包含一百余种疾病,并能够进行后期的体量扩充和模型更新,以提高问诊准确度和可信度,舌诊功能将中医舌诊理论与图像识别技术相结合,能够区分正常,白色,黄色和黑色四种不同舌苔颜色的舌苔图片,后三种对应医理论中的体内虚寒,白寒化热和邪热加重,在实现主体功能的同时利用Web技术和百度地图增加辅助功能,能够让用户快速导航至附近医疗地点,同时还添加注册登陆功能实现用户个性化管理,并以此为基础,结合协同过滤算法实现相关医疗文章的推荐,帮助用户更好地获取相关的医学常识。多种功能的相辅相成形成功能较为完善的医疗健康助手,兼顾系统的便捷性与准确性,能够有效帮助患者掌握自身健康状况,做到及时预防及时治疗,便捷有效地管理体健康。
his subject is based on mobile application development combined with deep learning. The Android platform serves as the client and the deep learning server provides image recognition for development. The main function of the system is inquiry and tongue diagnosis. The inquiry function is mainly implemented by a decision tree model. The diagnosis results include more than a hundred diseases, and can be subsequently expanded in volume and model updated to improve the accuracy and credibility of the diagnosis.The tongue diagnosis function combines the theory of TCM tongue diagnosis with image recognition technology to distinguish between normal , White, yellow and black tongue coating pictures of four different tongue coating colors. The last three correspond to the internal cold in the traditional Chinese medicine theory, the white cold and the evil heat are aggravated. While realizing the main function, use Web technology and Baidu maps to increase assistance Features that allow users to quickly navigate to nearby medical locations, and also add registration and login functions to achieve user personalized management.
崔晓艳、杨晔
中医学计算技术、计算机技术预防医学
ndroid医疗健康深度学习决策树智能推荐
ndroidMedical HealthDeep LearningDecision TreeIntelligent Recommendation
崔晓艳,杨晔.基于人工智能的移动医疗健康助手设计[EB/OL].(2020-04-15)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202004-117.点此复制
评论