|国家预印本平台
首页|左截断右删失数据下指数分布多变点Bayes估计

左截断右删失数据下指数分布多变点Bayes估计

Bayes Estimation of Exponential Distribution with Multiple Change Points for Left Truncated and Right Censored Data

中文摘要英文摘要

基于左截断右删失数据,通过添加数据构建了指数分布的完全似然函数,采用Fisher信息阵来确定参数的无信息先验,推导了多变点的各个参数的满条件分布,利用Gibbs抽样和Metropolis-Hastings算法结合的MCMC方法得到样本,最后通过R软件进行随机模拟,试验结果表明,使用Bayes方法处理左截断右删失数据下的指数分布多变点问题确实可以取得较好的结果,其中位置参数估计的相对误差小于3%。

his paper is based on left truncated and right censored data. The complete-data likelihood function of exponential distribution is obtained after the data input. The fisher information matrix is used to determine each priori parameter information, and the full conditional distribution with multiple change points of each parameter is deduced. The MCMC method of Gibbs sampling together with Metropolis-Hastings algorithm is used to get the samples. Finally, random simulation is done by R software. The test result indicates that using the Bayes method to handle the exponential distribution with Multiple Change Points for left truncated and right censored data is effective, in which the relative error of estimations of change-point position parameters is less than 3%.

彭秋曦、刘琼荪

数学

左截断右删失满条件分布MCMC方法多变点指数分布

left truncated right censoredfull conditional distributionMCMC methodhangeable pointexponential distribution

彭秋曦,刘琼荪.左截断右删失数据下指数分布多变点Bayes估计[EB/OL].(2015-01-07)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201501-99.点此复制

评论