一种Mean Shift视频目标跟踪算法的改进
n Improvement of Mean Shift Algorithm on Video Object Tracking
Mean Shift跟踪算法是一种鲁棒的快速特征匹配算法,针对该算法缺乏必要的目标模型更新缺点,有人提出整体模型更新算法,但是此算法仍然不能对场景中目标外观变化进行有效地处理。为此,本文对Mean Shift跟踪算法进行改进,提出根据每个分量的匹配贡献度的大小,选取当前帧需要更新的分量来实现目标模型更新。在VC++6.0软件平台上,利用OpenCV库函数,对改进的算法进行编程实现,实验结果表明该算法具有更好的跟踪鲁棒性。
Mean Shift tracking algorithm is a robust fast feature matching algorithm, which lacks of the necessary target model update, so the overall model update algorithm is proposed, but this method still can not efficiently hand the appearance changes on the scene. Therefore, this article presents a selective model update algorithm applied to Mean Shift tracking algorithm, in which each component of the feature model is regarded as a separate component, according to the value of the matching contribution for each component, selecting the component of current frame that needs to be updated. In the end, the improved algorithm is realized on VC++ 6.0 software platform. The experimental results show that the newly proposed algorithm is better for tracking robustness.
江汉红、李庆、彭艳芳
计算技术、计算机技术自动化技术、自动化技术设备
目标跟踪Mean Shift目标模型模型更新
Object TrackingMean Shiftarget ModelModel Updating
江汉红,李庆,彭艳芳.一种Mean Shift视频目标跟踪算法的改进[EB/OL].(2010-05-13)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201005-229.点此复制
评论