|国家预印本平台
首页|基于支持向量回归的颅内压时间系列无损估计方法

基于支持向量回归的颅内压时间系列无损估计方法

Support Vector Regression Based Time Series Mining Approach for Non-invasive ICP Assessment

中文摘要英文摘要

在以前的研究工作中,提出了一个数据挖掘框架来对颅内压进行无损估计,该方法是基于时间序列分析法对颅内压力进行预测。首先构建相应的估计模型数据库,然后从动脉血压值(ABP)和脑血流速度值(CBFV)中抽取特征向量,通过映射函数,将这些特征转换成对应于数据库中每个时间系列估计器的误差估计,根据这些误差,按照一定的准则选择最优的时间系列估计器,最后得到目标颅内压估计值。映射函数是该框架中的关键组成部分,其选择对估计的精确度有重要的影响。在先前的工作中,映射函数采取线性方法,线性函数的优点是方法简单、易于描述,但实际上,特征和误差间可能存在着更为复杂的关系,需要采取非线性方法才能更好的描述它们之间的隐含关系,以便在特征和误差之间建立更精确的关系。有助于估计精确性的提高。在本文中,我们采用支持向量回归构建存在于特征和误差间的非线性映射函数,以提高对颅内压估计精确性。通过数值比较证明:不同映射函数对颅内压的预测确实有较为明显的影响,在所采用的方法中,基于支持向量回归的非线性映射函数预测效果明显优于先前所采用的线性映射函数策略。

In this paper, a data mining framework has been proposed to estimate a desirable time series from a set of its related time series without knowing an explicit prior model relating them in our previous work. The mapping function only uses simple linear relation to depict the error and characteristics, the advantages of linear function method is simple, easy to describe is not completely describe. Actually, the actual situation may exist between them is more complicated nonlinear relation, we need to adopt complicated method to construct mapping function, thus to build the more accurate relationship between the eigenvalue and the error, that help to improve the accuracy of estimates. In this paper, we used the support vector regression analysis method to construct the nonlinear mapping function, the expectation of time series data mining framework for time series prediction can be more accurate result. Comparison of different mapping function: prediction of intracranial pressure obvious influences have adopted the method, based on support vector regression, the nonlinear mapping function is obviously superior to base on the Linear Least Squares of linear mapping function.

徐鹏、吴跃、胡晓、吴少智

医药卫生理论医学研究方法神经病学、精神病学

数据挖掘框架映射函数线性最小二乘法支持向量回归

ata Mining FrameworkMapping FunctionLinear Least SquaresSupport vector Regression

徐鹏,吴跃,胡晓,吴少智.基于支持向量回归的颅内压时间系列无损估计方法[EB/OL].(2011-01-11)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201101-451.点此复制

评论