基于BP神经网络的城市垃圾热值预测
alorific Value Forecast of Municipal Solid Waste Based on BP Neural Network
针对城市垃圾成分的复杂性和多变性,本文借助MATLAB编程软件,以城市居民生活垃圾场的进场垃圾的物理组成(食物、纸类、玻璃、灰土和纺织物等)作为输入,来建立预测城市垃圾热值的BP神经网络模型,发现当隐含层的节点数为5时,网络收敛速度较快,预测偏差最小,于是确定预测模型的结构为10-5-1。应用此模型对某垃圾场的进场垃圾热值进行预测,结果显示预测值与测量值的最大相对误差不超过3%,表明该网络预测模型有很大的实用性。
For the complexity and variability of MSW composition, using compiled software of MATLAB, the paper establish BP neural network model to forecast the municipal solid waste heat the value, In this model, the physical composition (plastic, paper, glass, wooden bamboo and fabrics, etc.) of approach waste, of the tiger dump is used as the input, found that when the nodes of hidden layer are 5, the network convergence speed is faster than other nodes, and the forecast bias is the smallest, thus, deciding the structure of predictive models is10-5-1. Using this model to predict the approach calorific value of a garbage dump, the results show that the maximum relative error of the predicted and measured values is less than 3%, indicating that the network prediction model is very practical.
李国勇、刘瑞平、贺敬
废物处理、废物综合利用
BP神经网络热值城市垃圾预测
BP neural networkcalorific valueMSW predict
李国勇,刘瑞平,贺敬.基于BP神经网络的城市垃圾热值预测[EB/OL].(2010-07-06)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201007-115.点此复制
评论