时间分数阶慢扩散方程的纯显-隐交替并行计算方法
Pure alternative segment explicit-implicit parallel computation method for the time fractional sub-diffusion equation
分数阶扩散方程可准确刻画反常扩散等迁移过程,在自然科学和工程计算方面应用较广。本文对时间分数阶慢扩散方程提出一类数值方法——交替分段纯显-隐(pure alternative segment explicit-implicit,PASE-I)和纯隐-显(pure alternative segment implicit-explicit,PASI-E)差分方法。它是将古典显式格式、古典隐式格式与交替分段技术相结合构造出的一类具有并行本性的差分方法。理论证明了格式解的存在唯一性,通过傅里叶方法和数学归纳法证明了格式是无条件稳定且收敛的。数值试验验证了理论分析,表明PASE-I格式和PASI-E格式在空间上二阶、时间上(2-α) 阶收敛,且在计算时间上相比隐式格式有大幅度提高,具有明显的并行性质。从而用本文格式解决时间分数阶慢扩散方程是可行的。
he fractional diffusion equations can accurately describe the migration process of anomalous diffusion,which are widely applied in the field of natural science and engineering calculation.This paper proposed a kind of numerical method with parallel nature which were the pure alternative segment explicit-implicit(PASE-I) and implicit-explicit(PASI-E) difference method for the time fractional diffusion equation.It is based on the combination of the explicit scheme,the implicit scheme and the alternating segment technique.Theoretical analyses have shown that the solution of PASE-I(PASI-E) scheme is uniquely solvable.At the same time the stability and convergence of the scheme were proved by the mathematical induction and Fourier method.Numerical experiments verified the theoretical analyses which showed that the convergence rates are temporally (2-α) order and spatially second-order.Meanwhile the PASE-I(PASI-E) scheme has obvious parallel properties because of the higher computational efficiency compared with the implicit scheme.Therefore it is feasible to use the scheme for solving the time fractional diffusion equation.
孙淑珍、赵雅迪、杨晓忠、吴立飞
数学
时间分数阶扩散方程交替分段纯显隐(PASE-I)格式稳定性并行计算数值试验
ime fractional diffusion equationPure alternative segment explicit-implicit(PASE-I) schemeStabilityParallel computingNumerical experiment
孙淑珍,赵雅迪,杨晓忠,吴立飞.时间分数阶慢扩散方程的纯显-隐交替并行计算方法[EB/OL].(2017-05-25)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/201705-1335.点此复制
评论