|国家预印本平台
首页|基于学术社团中心度的合著网络社区发现算法

基于学术社团中心度的合著网络社区发现算法

ommunity Detection in Co-authorship Network Based on Academic Community Center Degree

中文摘要英文摘要

针对现有合著网络社区划分算法对合著网络特性体现不充分的问题,提出一种新的基于学术社团中心度的社区划分算法。该算法提出了考虑合著作者关系强度的学术社团中心度,应用到Louvain算法的第二阶段作为到种子节点选取的依据,促使小社区合并至大社区,同时抑制大社区间的过度合并。本文以真实合著网络数据集进行验证,选取多种评价指标定量评估社区划分结果,并采用布局算法对合著网络社区结构做可视化展示。实验表明本文提出的社区划分算法能更好地发现学术社团,划分结果也更加合理。

he existing co-authorship network community division algorithm is not enough to reflect the characteristics of co-authorship network. A new community division algorithm based on academic community center degree is proposed. Firstly, the algorithm calculates each author's academic community center degree by considering the coherence of the author's relationship strength, then applies it to the second stage of the Louvain algorithm as the basis for seed nodes selection. We choose actual co-authorship network dataset, select a variety of evaluation indicators to assess the division results, and visualize the network structure by using appropriate layout algorithm. Experiments show that our algorithm can find the academic communities better, and the results are more legitimate.

樊晨达、储伟、常雨箫、吴渝

科学、科学研究计算技术、计算机技术

合著网络社区发现模块度优化Louvain

co-authorship networkcommunity detectionmodularity optimizationLouvain

樊晨达,储伟,常雨箫,吴渝.基于学术社团中心度的合著网络社区发现算法[EB/OL].(2017-04-24)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201704-358.点此复制

评论