|国家预印本平台
首页|多属性卷积神经网络及其在轴承故障诊断中的应用

多属性卷积神经网络及其在轴承故障诊断中的应用

Multi-attributes Convolution Neural Network and its Application to Bearing Quantitative Fault Diagnosis

中文摘要英文摘要

现有轴承故障诊断方法存在不足:传统方法数学计算复杂,诊断效果不佳,且一般只诊断故障位置,难以诊断载荷及故障大小。现有的利用卷积神经网络的方法,使用传统卷积神经网络,一个网络只能输出一个属性,不能同时诊断多个属性,为了同时诊断故障位置、故障大小及载荷,首次提出了一种多属性卷积神经网络,并应用于轴承故障诊断,直接利用一维振动信号对多属性卷积神经网络进行训练。优势在于克服了传统方法的缺点:能获得故障属性任意组合的诊断结果,网络参数更少,方法简洁,泛化能力强,准确率高。采用西储大学的轴承数据,进行了一系列测试,表明本文方法能准确地诊断轴承故障的多个属性,准确率高,同时有很好的泛化能力。

he existing methods of bearing diagnosis have some disadvantages: The conventional method has complex mathematical calculation and poor diagnosis effect. It generally only diagnoses the fault location and irrespective of the load and the fault size. The existing convolutional neural network method use the traditional convolution neural network. A network can only output a property and can not simultaneously diagnose multiple properties. In order to simultaneously diagnose the fault location, fault size and load, for the first time put forward a multi-attributes convolution neural network (MACNN) and applied to the bearing fault diagnosis. The multi-attribute convolution neural network is trained using one-dimensional vibration signal training . The advantages lies in overcoming the shortcomings of the traditional method: the diagnosis result of any combination of the fault attributes can be obtained, the network parameters are less, the method is simple, the generalization ability is strong and the accuracy rate is high. A series of tests have been carried out using the bearing data of Case Western Reserve University. The results show that the proposed method can accurately diagnose several properties of bearing faults with high accuracy and good generalization ability.

10.12074/201801.00001V1

机械学自动化技术、自动化技术设备计算技术、计算机技术

卷积神经网络故障诊断轴承多属性

onvolution neural networkFault Quantitative diagnosisBearingMulti-attributes

.多属性卷积神经网络及其在轴承故障诊断中的应用[EB/OL].(2017-12-26)[2025-08-02].https://chinaxiv.org/abs/201801.00001.点此复制

评论