|国家预印本平台
首页|多模态数据融合年龄感知的节点调度和资源分配

多模态数据融合年龄感知的节点调度和资源分配

Multimodal data Fusion Age-Aware scheduling and resource allocation

中文摘要英文摘要

本文针对工业物联网数据融合场景中数据收集的时效性问题,提出多模态数据融合年龄(age of multimodal data fusion, AoMF)的指标,捕捉实际协作节点共同服务一个实时应用对于信息新鲜度的要求的。以不同的信息年龄(age of information,AoI)上界来区分各种模态的数据有效期,将多模态数据融合年龄最小化问题建模为马尔科夫决策过程(Markov decision process,MDP),在通信和计算资源的限制下,基于DQN(DeepQ Network)算法联合设计节点的调度和非正交多址(Non-orthogonal Multiple Access,NOMA)传输资源的分配策略,以提高融合任务的新鲜度。仿真结果表明该方案的在降低AoMF方面的有效性。

iming at the timeliness of data collection in the data fusion scenario of industrial Internet of things , this paper propose the age of multimodal data fusion (AoMF)to capture the information freshness requirements of a real-time application jointly served by actual collaboration nodes. The validity period of each modal data is distinguished by different upper bounds of age of information (AoI). The problem of minimizing the AoMF is modeled as a Markov decision process (MDP). Under the limitation of communication and computing resources, the scheduling of nodes andnon orthogonal multiple access (NOMA) transmission resource allocation strategy are jointly designed to improve the freshness of fusion tasksbased on deep Q network (DQN) algorithm. Simulation results show that the proposed scheme is effective in reducing AoMF.

滕颖蕾、曹雅丽

通信无线通信计算技术、计算机技术

无线通信工业物联网多模态数据融合强化学习信息年龄

Wireless communicationIndustrial Internet of ThingsMultimodal data fusionReinforcement learningge of information

滕颖蕾,曹雅丽.多模态数据融合年龄感知的节点调度和资源分配[EB/OL].(2022-03-11)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202203-137.点此复制

评论