On a Babu\v{s}ka paradox for polyharmonic operators: spectral stability and boundary homogenization for intermediate problems
On a Babu\v{s}ka paradox for polyharmonic operators: spectral stability and boundary homogenization for intermediate problems
We analyse the spectral convergence of high order elliptic differential operators subject to singular domain perturbations and homogeneous boundary conditions of intermediate type. We identify sharp assumptions on the domain perturbations improving, in the case of polyharmonic operators of higher order, conditions known to be sharp in the case of fourth order operators. The optimality is proved by analysing in detail a boundary homogenization problem, which provides a smooth version of a polyharmonic Babu\v{s}ka paradox.
Francesco Ferraresso、Pier Domenico Lamberti
数学
Francesco Ferraresso,Pier Domenico Lamberti.On a Babu\v{s}ka paradox for polyharmonic operators: spectral stability and boundary homogenization for intermediate problems[EB/OL].(2019-11-25)[2025-08-02].https://arxiv.org/abs/1911.10965.点此复制
评论