|国家预印本平台
首页|基于药物和疾病特征关联的药物重定位混合推荐算法

基于药物和疾病特征关联的药物重定位混合推荐算法

中文摘要英文摘要

针对基于协同过滤的药物重定位算法进行了研究,考虑到数据稀疏性对协同过滤算法的巨大影响,提出一种基于药物和疾病特征关联的药物重定位混合推荐算法。该算法不仅使用了药物和疾病关系数据,还利用了药物结构、靶蛋白、副作用以及药物—疾病特征矩阵等信息计算药物之间的相似性,降低了数据稀疏性对推荐效果的影响,提高了推荐精度。经过对比实验发现,该算法具备较好的推荐效果,并能够发掘具有潜在联系的药物-疾病组合,从而进一步验证了该算法可以有效地应用于药物重定位。

he algorithm of drug repositioning based on collaborative filtering was studied. Considering the great influence of data sparsity on collaborative filtering algorithm, this paper proposed a hybrid recommendation algorithm based on the association of drug and disease characteristics. The algorithm not only used the data of drug and disease, but also used the information of drug structure, target protein, side effect and drug-disease feature matrix to calculate the similarity between drugs, which reduced the influence of data sparsity to the recommendation effect and improves the precision of recommendation. The results of contrastive experiment showed that the algorithm has a good recommendation effect, and can explore the drug-disease combinations which have potential relationship, and further verified that the algorithm can be effectively applied to drug repositioning.

刘杰、金柳颀、景波

10.12074/201901.00042V1

药学

药物重定位数据稀疏性疾病特征混合推荐相似度

刘杰,金柳颀,景波.基于药物和疾病特征关联的药物重定位混合推荐算法[EB/OL].(2019-01-03)[2025-08-24].https://chinaxiv.org/abs/201901.00042.点此复制

评论