|国家预印本平台
首页|Minimum $\ell$-degree thresholds for rainbow perfect matching in $k$-uniform hypergraphs

Minimum $\ell$-degree thresholds for rainbow perfect matching in $k$-uniform hypergraphs

Minimum $\ell$-degree thresholds for rainbow perfect matching in $k$-uniform hypergraphs

来源:Arxiv_logoArxiv
英文摘要

Given $n\in k\mathbb{N}$ elements set $V$ and $k$-uniform hypergraphs $\mathcal{H}_1,\ldots,\mathcal{H}_{n/k}$ on $V$. A rainbow perfect matching is a collection of pairwise disjoint edges $E_1\in \mathcal{H}_1,\ldots,E_{n/k}\in \mathcal{H}_{n/k}$ such that $E_1\cup\cdots\cup E_{n/k}=V$. In this paper, we determine the minimum $\ell$-degree condition that guarantees the existence of a rainbow perfect matching for sufficiently large $n$ and $\ell\geq k/2$.

Jie You

数学

Jie You.Minimum $\ell$-degree thresholds for rainbow perfect matching in $k$-uniform hypergraphs[EB/OL].(2023-06-16)[2025-08-03].https://arxiv.org/abs/2306.09796.点此复制

评论