基于混沌优化的神经网络预测控制研究
Neural Network Predictive Control Based upon Chaos Optimization
提出了基于Logistic映射的混沌优化算法(LCOA)和基于Tent映射的混沌优化算法(TCOA)的非线性神经网络预测控制器,这两种控制器都避免了梯度算法易陷入局部极值和传统神经网络预测控制中复杂繁琐的梯度矩阵计算问题,减少了计算量,提高了精确性。另外,TCOA混沌轨道点密度为均匀分布,迭代速度更快,仿真实例显示TCOA具有更好的跟踪性能和精度,也验证了Tent映射作为搜索策略的良好特性。
wo new neural network predictive controllers (NNPC) are proposed which combining neural network identifying, COA and the concept of predictive control. The Logistic-map-based COA (LCOA) and Tent-map-based COA (TCOA) are respectively as online optimization. It can avoid calculating the complicated gradient and the inverse matrix in the nonlinear predictive control. As the probability density function of the chaotic sequence for Tent map is the uniform function, the TCOA has the outstanding advantages and higher iterative speed. The simulation studies show the effective performance of the proposed controllers, and also verify the good searching ability of Tent map.
袁著祉、王繁珍、陈增强
自动化技术、自动化技术设备
混沌优化预测控制神经网络ent映射Logistic映射
chaos optimizationpredictive controlneural networkent mapLogistic-map
袁著祉,王繁珍,陈增强.基于混沌优化的神经网络预测控制研究[EB/OL].(2009-10-28)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200910-592.点此复制
评论