基于联邦学习的上下文感知深度学习QoS预测方法
ontext-aware deep learning QoS prediction algorithm based on federated learning
云计算技术的快速发展使得云服务推荐成为当前的研究热点,QoS反映了服务的非功能属性,基于QoS预测进行云服务推荐能够最大程度满足用户需求。传统的协同过滤和矩阵分解方法容易产生数据稀疏和冷启动问题。本文提出了一种基于联邦学习的上下文感知深度学习QoS预测方法。结合用户和服务的上下文特征进行神经网络学习,并与联邦学习技术相结合,在各客户端进行模型的训练,然后在中央服务器进行模型参数的聚合更新,充分保护了用户的数据隐私。我们在一个真实世界数据集上进行实验并与几种经典算法进行比较,实验结果验证了本文提出的QoS预测算法的有效性。
he rapid development of cloud computing technology has made cloud service recommendations a current research hotspot. QoS reflects the non-functional attributes of services, and cloud service recommendations based on QoS prediction can best meet user needs. Traditional collaborative filtering and matrix factorizationmethods are prone to data sparsity and cold start problems. In this paper, we propose a context-aware deep learning QoS prediction method based on federated learning. Combining the contextual features of users and services for neural network learning, and combining with federated learning techniques, the model is learned at each client, and then the model parameters are aggregated and updated at a central server process, fully protecting the data privacy of users. We conduct experiments on a real-world dataset and compare them with several classical algorithms, and the experimental results validate the effectiveness of the QoS prediction algorithm proposed in this paper.
陈伟、全庆一
计算技术、计算机技术
计算机应用技术云服务推荐上下文感知QoS预测
omputer Application Technologyloud Service Recommendationsontext-awareQoS Prediction
陈伟,全庆一.基于联邦学习的上下文感知深度学习QoS预测方法[EB/OL].(2023-03-17)[2025-08-05].http://www.paper.edu.cn/releasepaper/content/202303-206.点此复制
评论