基于社会化情绪时间效应的矩阵分解推荐算法
Based on Social Emotional Temporal Effect Matrix Factorization Techniques for Recommender System
截至 2015 年 6 月,我国网民规模达 6.68 亿,互联网普及率为 48.8%。伴随着互联网的发展,至今个性化推荐系统走过了20年。个性化推荐系统已经逐渐出现在我们的生活中,如电子商务网站亚马逊通过分析用户的浏览和购买记录为用户推荐他们可能喜欢的商品等,而本文改进了Yehuda Koren提出的timeSVD++模型,称之为 timeSVDi++模型,该模型一方面该模型融合了相关隐式反馈因子,另一方面则是考虑了数据集的时间效应,该时间效应从三个方面入手,分别为用户偏置、物品偏置以及用户特性偏置。在数据集的时间效应上不仅考虑了其固有周期性,还考虑了用户的情绪瞬态变化,并将其分为无规律部分和有规律部分,其有规律部分通过周期性社会化的情绪来拟合。
s of June 2015, the scale of China reached 668 million Internet users, Internet penetration rate of 48.8%. With the development of the Internet, it has gone through a personalized recommendation system for 20 years. Personalized recommendation system has gradually appeared in our lives, such as Amazon's e-commerce site for users to recommend their favorite products, etc. may by analyzing the user's browsing and purchase history, and this article is improved timeSVD ++ model proposed by Yehuda Koren, called timeSVDi ++ model that combines the relevant aspect of this model implicit feedback factor, on the other hand it is time to consider the effect of the data set, the time effect from three aspects, namely, the user bias, bias and user objects characteristics of the bias. On time effect datasets consider not only its inherent cyclical, but also consider the mood transient users, and is divided into irregular portions and regular part of its regular part by periodically socialized emotions fitting.
朱韬、肖波
计算技术、计算机技术
个性化推荐协同过滤矩阵分解全局偏置时间效应
ersonalization recommendation systemcollaborative filtermatrix decompositionglobal biastemporal dynamicskey
朱韬,肖波.基于社会化情绪时间效应的矩阵分解推荐算法[EB/OL].(2016-01-07)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201601-133.点此复制
评论