|国家预印本平台
首页|级联的一阶段人脸检测算法

级联的一阶段人脸检测算法

SSD: Cascade Single Shot Face Detector

中文摘要英文摘要

随着卷积神经网络的发展,人脸检测取得了很大的成功。 然而,在无约束环境中检测小而模糊的面部仍然是一个具有挑战性的问题。 本文提出了一种新型的级联的一阶段人脸检测算法,命名为Cascade Single Shot Face Detector(CSSD),它在基于锚点的人脸检测器中引入了新的级联分类和回归网络,以抑制误报并提高定位精度。 我们在以下三个方面做出了贡献:1)提出了一个特征增强方法,并在多级特征图上预测的人脸检测架构来处理不同尺度的人脸; 2)采用级联方法分两步回归人脸边界框; 3)提前过滤简单负样本以减少搜索空间,并对困难样本和正样本重采样至1:3的训练方法。我们的方法在FDDB和WIDER FACE公开数据据集上都实现了先进的检测性能。

Face detection has achieved great success with the development of convolution neural network. However, it remains a challenging problem to detect small and blurred faces in unconstrained environment. This paper presents a novel cascade single-shot face detector, named Cascade Single Shot Face Detector (CSSD), which introduces novel cascade classification and regression network in an anchor-based face detector to reject false positives and improve location accuracy. We have contributed in the following three aspects: 1) proposing a feature enchanted and scale-invariable face detection architecture to process faces with different scales; 2) regressing bounding boxes of faces in two steps with a cascade method; 3) filtering negative anchors online after anchor refinement and rebalancing puzzle negative anchors and positive anchors with rate of 3:1. As a consequence, our method achieves state-of-the-art detection performance on FDDB and WIDER FACE dataset.

孙海峰、徐童、王帅楠、李炜

计算技术、计算机技术

一阶段方法级联回归人脸检测深度卷积神经网络

one-stagecascade regressionface detectiondeep convolutional neural network

孙海峰,徐童,王帅楠,李炜.级联的一阶段人脸检测算法[EB/OL].(2019-01-25)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/201901-163.点此复制

评论