|国家预印本平台
首页|支持向量机回归在矿区GPS高程转换中的应用

支持向量机回归在矿区GPS高程转换中的应用

pplication of Support Vector Regression For GPS Height Transformation In Mining Area

中文摘要英文摘要

基于统计学习理论和支持向量机原理,提出了支持向量机回归应用于矿区GPS高程转换的方法用以精化矿区似大地水准面,研究了支持向量机回归、多项式、GA-BP神经网络三种模型在GPS高程转换中的应用,结果表明:支持向量机回归拟合数据的精度优于多项式和GA-BP神经网络,并且有效地解决了神经网络拓扑结构选择困难、过学习、无法避免局部极值等问题。

In order to refine quasi-geoid in mining area, a Support Vector Regression(SVR) model based on statistical lerning theory and Support Vector Machines(SVM) principle was employed for GPS height transformation. Besides, SVR, polynomial and GA-BP neural network were proposed to transform GPS height. The compared and analyzed test results show that the precision of SVR is superior to that of polynomial and GA-BP. Moreover, SVR can effectively overcome many shortcomings that neural network exists, such as topology selecting difficult, over-learning, unable to avoid regional maximum etc.

张健、王旭东、叶勇、郝蒙蒙

矿山地质、矿山测量工程设计、工程测绘

GPS高程高程异常似大地水准面支持向量机回归神经网络

GPS heightheight anomalyquasi-geoidSupport Vector Regressionneural network

张健,王旭东,叶勇,郝蒙蒙.支持向量机回归在矿区GPS高程转换中的应用[EB/OL].(2010-07-20)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201007-376.点此复制

评论