|国家预印本平台
首页|基于滑动窗ICA的信号包络检测及其在脑-机接口中的应用

基于滑动窗ICA的信号包络检测及其在脑-机接口中的应用

he envelope extraction based on sliding window ICA and its application to brain - computer interface

中文摘要英文摘要

脑电基本节律的包络变化与脑思维状态有着密切的关系,这一特点被广泛应用于脑-机接口的算法设计与系统实现中。本文提出了一种基于滑动窗独立分量分析(ICA)的信号包络在线检测新方法。论文对算法的有效性进行了详细的分析论证,发现滑动窗ICA算法不仅具有良好的盲源分离性能,并且ICA动态混合模型参数能有效表达源信号的幅度调制信息。论文将所提算法应用于脑电mu节律的包络检测和运动想象分类,并进行了在线脑-机接口系统的实现和测试,获得了较好的运动想象在线识别效果。

he mental state has a close relationship to the envelop changes of basic rhythms of EEG and this feature is widely used in algorithm design and system implementation of brain-computer interface(BCI). In this paper, we put forward a new method of applying ICA algorithm based on sliding window to the online envelope extraction of signals. By a detailed analysis and demonstration of the efficiency of this algorithm, we find that ICA algorithm based on sliding window not only has a better blind source separation performance, but also can give the amplitude modulation information of the source signal by the ICA dynamic mixture model parameters. This paper applies the proposed algorithm to envelope extraction of the mu rhythm of EEG and motor imagery classification. At last, the implementation and testing of an online BCI system based on ICA algorithm is described and a better online recognition results are achieved.

吴小培、宋俊可、巩笑晓、郭晓静

电子技术应用计算技术、计算机技术自动化技术、自动化技术设备

独立分量分析Infomax算法滑动窗运动想象

Independent component analysisInfomax algorithmSliding windowMotor imagery

吴小培,宋俊可,巩笑晓,郭晓静.基于滑动窗ICA的信号包络检测及其在脑-机接口中的应用[EB/OL].(2012-01-12)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201201-412.点此复制

评论