|国家预印本平台
首页|非线性尺度和改进ORB的配准方法

非线性尺度和改进ORB的配准方法

he registration algorithm of nonlinear scale and improved ORB

中文摘要英文摘要

对于ORB算法尺度不变性较差,SIFT算法时间复杂度高和没有充分保持图像边缘细节的问题,提出一种基于非线性尺度空间和改进ORB的图像配准方法NLORB。该算法采用非线性尺度空间消除噪声并保持边缘,使用图像熵确定尺度参数,设置合适的特征点间距,多尺度空间进行非极大值抑制,构造稳定的ORB特征点,生成描述子,用汉明距离和RANSAC进行匹配。通过仿真实验对比,该算法能改善ORB算法尺度不变性和分布均匀性,提高匹配的成功率。

ORB algorithm doesn`t perform well in scale invariance and SIFT algorithm with high time complexity does not respect the natural boundaries of images. Aiming at the issue, we put forward an image registration algorithm based on the nonlinear scale space and improved the ORB. Firstly, the nonlinear scale space is used to smooth noise and retain object boundaries, to set scale parameters based on image entropy and to set proper distance between feature points, so that the ORB detectors are stable. Then, maxima is searched for in scale and spatial location and descriptors are computed. At last, we match features with RANSAC algorithm and hamming distance. We testify our improved algorithm through experiments and demonstrate that it can shorten time of registration, improve greatly robustness and perform well.

董浩、吕东岳

计算技术、计算机技术

多媒体图像配准ORB非线性尺度空间图像熵

multimediaimage registrationORB algorithmnonlinear scale spaceimage entropy

董浩,吕东岳.非线性尺度和改进ORB的配准方法[EB/OL].(2018-01-11)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201801-61.点此复制

评论