|国家预印本平台
首页|基于一般线性模型和支持向量机的fNIRS精神分裂症患者的自动识别

基于一般线性模型和支持向量机的fNIRS精神分裂症患者的自动识别

utomatic Schizophrenia Discrimination on fNIRS by Using General Linear Model and SVM

中文摘要英文摘要

精神分裂症是一种严重的精神疾病,由于缺乏客观的生理数据支持和统一的数据分析方法,医生只能依靠主观经验来区分正常人和病人,容易导致误诊。近年来,功能性近红外光谱成像(fNIRS)已经广泛应用于临床诊断,它可以检测血液中血红蛋白浓度随着光波长的变化而变化的情况。本文提出了一种基于在认知任务期间测得的fNIRS数据来区分精神分裂症患者的方法。首先,我们招募了一批受试者,其中包含34名健康人和42名精神分裂症患者,对他们展开了一次记忆测试,记录了两组受试者前额叶皮层中血红蛋白浓度的变化反应。然后使用一般线性模型(GLM)提取出精神分裂症患者和健康人的氧合血红蛋白浓度信号的差异特征,利用此特征,设计和训练了基于支持向量机(SVM)的分类器来进行识别任务。实验结果表明,该分类器的总分类准确率为85.15%,其中健康人的分类准确率为100%,精神分裂症患者的分类准确率为78.58%。研究结果表明,fNIRS有望成为诊断精神分裂症的有效客观依据。

Schizophrenia is a kind of serious mental illness. Due to the lack of an objective physiological data supporting and a unified data analysis method, doctors can only rely on the subjective experience of the data to distinguish normal people and patients, which easily lead to misdiagnosis. In recent years, functional Near-Infrared Spectroscopy (fNIRS) has been widely used in clinical diagnosis, it can get the hemoglobin concentration through the variation of optical intensity. In this paper, a method is proposed to distinguish patients with schizophrenia based on data measured by fNIRS during a cognitive task. Firstly, general linear model (GLM) was used to extract features based on oxy-Hb signals from 52-channel fNIRS data of schizophrenia and healthy controls. Then, a classier based on Support Vector Machine (SVM) is designed and trained to discriminate schizophrenia from healthy controls. We recruited a sample which contains 34 healthy controls and 42 schizophrenic patients to do the one-back memory task. The hemoglobin response was measured in the prefrontal cortex during the task using a 52-channel fNIRS system.The experimental results indicate that the proposed method can achieve a satisfactory classification with the accuracy of 85.15%, 100% for healthy controls and 78.58% for schizophrenic samples. Also, our results suggested that fNIRS has the potential capacity to be an effective objective biomarker for the diagnosis of schizophrenia.

高瑞奇、宋红、陈磊

神经病学、精神病学医学研究方法基础医学

功能性近红外光谱精神分裂症鉴别一般线性模型支持向量机

Functional Near-infrared SpectroscopySchizophrenia DiscriminationGeneral Linear ModelSupport Vector Machine

高瑞奇,宋红,陈磊.基于一般线性模型和支持向量机的fNIRS精神分裂症患者的自动识别[EB/OL].(2017-05-24)[2025-08-22].http://www.paper.edu.cn/releasepaper/content/201705-1305.点此复制

评论