考虑记忆时滞的捕食者-食饵模型的分支分析
Bifurcation Analysis of a Predator-Prey Model with Memory Delay
本文研究了一类Neumann边界条件下带有记忆时滞的捕食者-食饵模型. 首先分析了模型的适定性(存在性、唯一性和正性)和半平凡常数稳态解的稳定性. 接着又分析了正常数稳态解的稳定性, 同时, 以基于记忆的扩散系数为分支参数, 得到了系统的Turing分支和Hopf分支. 最后利用数值模拟验证所得结论.
his paper investigates a predator-prey model with memory delay under Neuma- nn boundary conditions. Firstly, the wellposedness (existence, uniqueness, and positivity) of the model and the stability of the semi-trivial constant steady-state solution are analyzed. T- hen, the stability of the positive constant steady-state solution is analyzed. At the same time, the Turing bifurcation and Hopf bifurcation of the system are obtained by using memory-bas- ed diffusion coefficient as the bifurcation parameter. Finally, numerical simulations are used to verify the conclusions obtained.
周鑫炎、王小利
生物科学研究方法、生物科学研究技术
应用数学 反应-扩散 空间记忆 适定性 Turing分支 Hopf分支.
pplied mathematics Reaction-diffusion Spatial memory Wellposedness Turing bifurcation Hopf bifurcation.
周鑫炎,王小利.考虑记忆时滞的捕食者-食饵模型的分支分析[EB/OL].(2023-09-20)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202309-38.点此复制
评论