不具有增性算子的不动点及其对非线性积分方程的应用
Fixed points of operators without increasing property with applications to nonlinear integral equations
利用锥理论,研究了不具有增性的算子 $A$ 不动点的存在性,该算子 $A$ 介于算子 $B_1$ 与 算子$B_2$ 之间, $B_1, B_2$ 具有某些增性. 得到算子 $A$ 的不动点存在性和包含不动点的区间. 最后,所得结果被应用的一类非线性积分方程.
By using the cone theory, it is studied that existence of fixed points of operator $A$ without increasing property. The operator $A$ lies between operators $B_1$ and $B_2$, where $B_1, B_2$ have some increasing property. We obtain the existence of fixed points of the operator $A$ and the interval containing the fixed points. Lastly, the results are applied to a class of nonlinear integral equations.
赵增勤、林秀丽
数学
应用数学偏序巴拿赫空间凝聚算子不动点非线性积分方程
pplied mathematicspartially ordered Banach space condensing operator fixed point nonlinear integral equation
赵增勤,林秀丽.不具有增性算子的不动点及其对非线性积分方程的应用[EB/OL].(2017-04-26)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201704-528.点此复制
评论