|国家预印本平台
首页|基于概率神经网络的斜拉桥子结构损伤识别研究

基于概率神经网络的斜拉桥子结构损伤识别研究

Substructure damage identification of cable-stayed bridges based on probabilistic neural network

中文摘要英文摘要

将人工神经网络应用于结构损伤识别是近年来新兴的一门研究课题。概率神经网络是一种用于模式分类的神经网络,适合进行结构损伤识别。本文首先介绍了子结构损伤识别方法以及概率神经网络的基本理论;在此基础上,对一斜拉桥子结构损伤进行数值模拟,所使用训练和测试样本均分为不计噪声和考虑噪声两种情况;最后对神经网络在识别精度和受噪声影响等方面进行分析,得出结论应用概率神经网络进行斜拉桥子结构损伤识别是可行而有效的。

It is an active research subject in recent years that the artificial neural network has been used on structure damage identification. The probabilistic neural network is suitable to pattern classification. In this paper, a method of substructure damage identification and the theories of probabilistic neural network are introduced firstly. Then, the numerical simulation for the damage identification of a cable-stayed bridge is carried out using probabilistic neural networks, in which the training simples and test simples are under noise-free and including the noise. Finally, identification precision and noise effect of the neural networks are compared. According to the analysis above, the conclusion is given that the probabilistic neural network is suitable to substructural damage identification of cable-stayed bridges.

杨晓明、时丹

工程基础科学自动化技术、自动化技术设备计算技术、计算机技术

人工神经网络概率神经网络子结构损伤识别噪声

artificial neural networkprobabilistic neural networksubstructuredamage identificationnoise

杨晓明,时丹.基于概率神经网络的斜拉桥子结构损伤识别研究[EB/OL].(2008-12-23)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200812-715.点此复制

评论