一类代数量子超群
class of algebraic quantum hypergroups
代数量子群是由著名的代数物理学家Alfons Van Daele在1994年最先引进并开展研究的. 之后,有许多代数和算子代数学家进行了深入的研究.这一代数结构解决了无限维Hopf代数的对偶问题. 随后,他与Delvaux合作,发展了代数量子超群.但到目前为止,例子太少.鉴于此,本文主要构造了一类代数量子超群,给出了大量的有意义的例子,说明了后者的意义所在.
In 1994, Alfons Van Daele introduced and studied the notion of an algebraic quantun group. After words, he established the duality theory of algebraic quantum groups. Recently he and Delvaux developed the theory of algebraic quntum hypergroups as a generalization of an algebraic quantum group. However, few examples are known. We present in this paper a family of examples of algebraic quantum hypergroups by considering the group-like elements. These examples are very interesting.
王栓宏
数学
代数量子(超)群Hopf代数积分余积分群像元素
lgebraic quantum (hyper)groupsHopf algebraintegralcointegralgroup-like element
王栓宏.一类代数量子超群[EB/OL].(2009-09-04)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/200909-146.点此复制
评论