|国家预印本平台
首页|PI Net:基于3D点云与RGB数据的大型室内场景语义分割

PI Net:基于3D点云与RGB数据的大型室内场景语义分割

PI Net: Semantic Segmentation of Indoor Scene Based on 3D and RGB Data Fusion

中文摘要英文摘要

\justifying 3D点云数据的语义分割是一个很有挑战性的任务。由于点云丰富的几何数据结构,大多数研究专注于点云的空间结构,忽略了点云的外观信息。本文提出一种新颖的深度融合网络PI Net,用于语义分割。PI Net网络有两个分支,P-Net和I-Net,用于组合融合点云数据的空间信息和外观信息。其中,P-Net利用原始的点云数据来提取空间特征。I-Net先将点云数据转换为相应的图像,然后提取外观特征。最后,我们使用投影变换来对齐和融合两个分支的特征以及运用多层感知器来达到语义分割的目的。我们提出的PI-Net在斯坦福2D-3D-Semantics数据集上得到了良好的实验结果。

\justifying Semantic segmentation for point cloud scene has always been a challenging task. Due to the rich geometric data structure of point cloud, most researchers focus on the spatial structure of point cloud. However, the appearance information of point cloud is not fully utilized. In this paper, we propose a novel deep fusion network, named PI Net, for semantic segmentation. Our proposed network has two branches, P-Net and I-Net, to combine the spatial and the appearance information of point cloud data. P-Net employs the raw point cloud to extract the spatial features. Meanwhile, I-Net transforms point cloud data to corresponding images and then extracts appearance information. Finally, we use projection transform to align and fuse the features of the two branches for semantic segmentation. Our proposed PI-Net achieves state-of-the-art performance on Stanford 2D-3D-Semantics Dataset.

贾媛媛、张建、黄雅平、田媚、刘宇鸣

计算技术、计算机技术

点云、PI Net、外观特征、空间特征、投影变换

point cloudPI Netappearance featuresspatial featuresprojection transform

贾媛媛,张建,黄雅平,田媚,刘宇鸣.PI Net:基于3D点云与RGB数据的大型室内场景语义分割[EB/OL].(2019-03-12)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201903-118.点此复制

评论