基于多重核稀疏表示分类
Multiple Kernel Sparse Representation Based Classification
稀疏表示分类(SRC)及核方法在模式识别的很多问题中都得到了成功的运用。为了提高其分类精度,提出多重核稀疏表示及其分类(MKSRC)方法。提出一种快速求解稀疏系数的优化迭代方法并给出了其收敛到全局最优解的证明。对于多重核的权重给出了两种自动更新方式并进行了分析与比较。在不同的人脸图像库上的分类实验显示了所提出的多重核稀疏表示分类的优越性。
Sparse representation based classification (SRC) and kernel methods have been successfully applied in many pattern recognition problems. In order to improve the classification accuracy, we propose multiple kernel sparse representation based classification (MKSRC). A fast optimization iteration method for solving sparse coefficients and the proof of the associated convergence to global optimal solution are given. For updating the kernel weights of MKSRC, two different updating methods and the associated comparison and analysis are given. The experimental results on four face image databases show the superiority of the proposed multiple kernel sparse representation based classification.
罗斌、陈思宝、许立仙
计算技术、计算机技术
稀疏表示分类(SRC)核方法多重核核权重模式识别
sparse representation based classification (SRC)kernel methodmultiple kernelkernel weightpattern recognition
罗斌,陈思宝,许立仙.基于多重核稀疏表示分类[EB/OL].(2013-09-13)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201309-202.点此复制
评论