基于脑网络的阿尔茨海默病临床变量值预测
Prediction of clinical variables in Alzheimer's disease based on brain network
目前脑功能连接网络已被广泛用于于大脑疾病诊断,然而传统的脑网络分类方法无法评估疾病所处的阶段以及预测病情的发发展。近期的研究表明,脑疾病的临床变量值可以有效地帮助医生进行疾病评估,因此一种基于脑连接网络的方法被提出,用于对阿尔茨海默病临床变量值进行预测。首先从脑影像中提取功能连接网络,然后使用LASSO进行特征选择,剔除不具有判别性的边。同时融合网络的聚类系数和边的权重作为特征。最后使用支持向量回归机(support vector regression, SVR)预估临床变量值。在ADNI数据集上对提出的方法进行验证,实验结果表明提出的方法能够准确的预测疾病临床变量值同时验证了多种特征融合的有效性。
he brain functional connectivity networks have been widely used in the diagnosis of brain diseases. However, the traditional brain network based classification methods cannot assess the stage and predict the development of the disease. Recent works show that the value of the brain disease clinical variables can effectively help to evaluate the disease. In this paper, a novel brain connectivity network based method is proposed to estimate the value of Alzheimer's disease clinical variables. First, the functional connectivity network is extracted from the brain images. Then LASSO is adopted for feature selection eliminating redundant features and the clustering coefficients and edge weights of the network are fused as features. Finally, support vector regression machine (SVR) is involved to predict the value of the clinical variables. The proposed method is validated on ADNI dataset and the experimental results show that the proposed method can accurately predict the value of disease clinical variables and verify the effectiveness of the fusion of multiple features.
路子祥、张道强、屠黎阳、祖辰
神经病学、精神病学医学研究方法基础医学
模式识别阿尔茨海默病特征选择特征融合功能连接网络回归
Pattern recognitionAlzheimer's diseaseFeature selectionFeature fusionFunctional connectivity networkRegression
路子祥,张道强,屠黎阳,祖辰.基于脑网络的阿尔茨海默病临床变量值预测[EB/OL].(2016-05-26)[2025-08-25].http://www.paper.edu.cn/releasepaper/content/201605-1281.点此复制
评论