|国家预印本平台
首页|基于多指标模糊综合评价的交通拥堵预测与评估

基于多指标模糊综合评价的交通拥堵预测与评估

中文摘要英文摘要

针对各交通时段对交通拥堵的不同影响、单因素无法准确表征交通拥堵状态的问题,提出了一种采用多指标模糊综合评价的交通拥堵评价预测方法。该方法利用粒子群算法优化支持向量回归机对道路平均速度和交通流量进行预测,得到三个因素指标平均速度v、交通流密度D、道路饱和度S的预测值。将三个因素指标输入到多指标模糊综合评价模型中,即首先建立交通拥堵状态的因素集和评价集,通过熵值法确定早高峰、晚高峰、其他时段下三个因素指标的权重系数,再通过梯形隶属度函数确定各指标在各时段的隶属度,最终将交通拥堵状态划分为六个级别。通过对美国PeMS数据库中I405高速路的交通数据进行预测评价实验证明,采用该方法预测的交通拥堵状态基本与实际状态吻合,具有较高的预测精度,正确率可达94.79%。

In view of the different impacts of different traffic periods on traffic congestion and single factor fail to accurately characterize the traffic congestion state, this paper proposed a multi-index fuzzy comprehensive evaluation method for traffic congestion state evaluation. The method used the particle swarm optimization algorithm to optimize the support vector regression to predict the average road speed and traffic flow, obtained the predicted values of the average speed v, traffic flow density D, and road saturation S, and input the three factor indexes to Multi-index fuzzy comprehensive evaluation model that establish the set of factors and evaluation (level) for traffic congestion. It determined the weight coefficients of three factors under the morning peak and the evening peak and other periods by the entropy method, then determined the degree of membership of each index in each period by the trapezoidal membership function. Finally, it dividedhe traffic congestion state into six levels. The results of predictive evaluation at the traffic data of the I405 highway in PeMS show that the traffic congestion state evaluated by the proposed method is basically consistent with the actual state and has a high prediction accuracy, the correct rate can reach 94.79%.

白璘、武奇生、叶珍、晏雨婵

10.12074/201810.00083V1

公路运输工程

交通拥堵多指标模糊综合评价因素指标熵值法梯形隶属度函数

白璘,武奇生,叶珍,晏雨婵.基于多指标模糊综合评价的交通拥堵预测与评估[EB/OL].(2018-10-11)[2025-08-02].https://chinaxiv.org/abs/201810.00083.点此复制

评论