基于权重学习的图像最大权对集匹配模型
Weight Learning-based Maximum Weight Matching Models for Image Matching
在图匹配模型中权重的设置对匹配性能有很大影响。直接计算的权重往往不符合匹配图像的实际情况。本文参照二次分配问题的图匹配学习思想,给出了一阶和二阶最大权对集模型的权重学习计算方法。 一阶最大权对集模型直接采用图像特征点作为图的顶点,而二阶最大权对集模型则采用某些特征点之间的连接边作为顶点,两个模型都可以通过Kuhn-Munkras算法求解。 一阶最大权对集模型在本质上等价于二次分配问题的线性情况,但二阶最大权对集模型是一个新模型。在CMU House数据库上的图像匹配实验结果表明,从整体上看,二阶最大权对集模型优于一阶最大权对集模型,且两者在权重通过学习计算时的性能也优于直接计算的情况。
Weight setting has a great impact on performance of graph matching models. Weights by direct calculation often produce unsatisfactory correspondences between real images. Based on the idea of learning graph matching for quadratic assignment problems, this paper considers weight learning methods for first- and second-order maximum weight matching models. In a first-order maximum weight matching model, image feature points are regarded as vertices of a bipartite graph, whereas in a second-order maximum weight matching model, edges connecting two feature points are viewed as vertices. Both of the first- and second-order models can be solved by the Kuhn-Munkras algorithm. The first-order maximum weight matching model is essentially equivalent to the linear quadratic assignment problem, but the second-order maximum weight matching model is a new model. Experimental results on the CMU House database show that the second-order maximum weight matching model can totally outperform the first-order maximum weight matching model, and both of them perform better in the case of weight leaning than direct calculation.
李玉鑑、阳勇、尹创业
计算技术、计算机技术
计算机应用技术图像匹配权重学习最大权对集Kuhn-Munkras算法
computer application technologyImage matchinglearning weightmaximum weight matchingKuhn-Munkras algorithm
李玉鑑,阳勇,尹创业.基于权重学习的图像最大权对集匹配模型[EB/OL].(2013-03-07)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201303-268.点此复制
评论