|国家预印本平台
首页|城市功能区发现的k-means聚类算法

城市功能区发现的k-means聚类算法

K-means clustering algorithm for urban functional area discovery

中文摘要英文摘要

城市的发展催生出了不同的功能区域,发现并合理地安排与规划这些功能区对政策制定和资源配置有着重要意义。目前随着人工智能技术、物联网技术和云计算技术的不断发展,利用城市大数据来进行城市规划已成为大势所趋。城市交通工具的多样化使得居民出行更为便利,而居民的出租车出行产生了大量可供研究的轨迹数据。本文利用轨迹数据和结合兴趣点(POI,Point of Interest)数据进行统筹研究,运用k-means聚类算法,划分出城市的不同功能区。

he development of the city has formed different functional areas, and it is of great significance to find and reasonably arrange and plan these functional areas for policy making and resource allocation. At present, with the continuous development of artificial intelligence technology, networking technology and cloud computing technology, the use of urban data for urban planning has become a trend. The diversification of urban transport makes it easier for residents to travel, and the travel of the residents produced a large number of individual mobile data for research. This thesis makes use of the individual mobile data and the POI(Point of Interest) data to make a comprehensive study, and the k-means clustering algorithm is applied to identify the different functional area of the city.

李琳、秦凤、袁景凌

计算技术、计算机技术自动化技术经济

轨迹数据POI功能区k-means 聚类

trajectory dataPOIsocial functions of city regionsk-means clustering

李琳,秦凤,袁景凌.城市功能区发现的k-means聚类算法[EB/OL].(2017-05-11)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/201705-699.点此复制

评论