基于分层强化学习的智慧小镇客流管理系统设计
esign of Smart Town Customer Flow Management System based on Hierarchical Reinforcement Learning
随着人工智能技术的发展,越来越多的自动化决策系统开始依赖智能算法的控制。强化学习技术作为一种动态适应环境的智能算法,被广泛的应用到推荐算法,机械控制,交通管理等领域中。出于优化利润,提升顾客购物体验等需求,许多线下购物场景中需要对店铺中的人流进行控制管理,本文提出了基于强化学习和数字仿真的人流控制方法,通过在数字仿真环境中训练强化学习智能体,为智慧小镇中的人流控制问题给出了自动化,智能化的解决方案,从而更好地满足智慧小镇中的顾客需求,并创造更好的购物体验。
With the rapid development of artificial intelligence technology, more and more automatic decision-making systems are relying on the control of intelligent algorithms. As an intelligent algorithm that dynamically adapts to the environment, reinforcement learning is widely applied in fields such as recommendation algorithms, robotic control, and traffic management. In order to optimize the overall profits and improve the shopping experience, many shopping scenarios require control and management of customer flow. In this paper, we propose an intelligent customer flow management method based on reinforcement learning and digital simulation. By training reinforcement learning agents in a digital simulation environment, we provide an automatic and intelligent customer flow management policy in the smart towns, which can better serve the customers in smart towns, leading to a better shopping experience.
罗嗣宏、胡铮
自动化技术、自动化技术设备计算技术、计算机技术
人工智能强化学习分层强化学习客流管理
rtificial intelligenceReinforcement learningHierarchical reinforcement learningCustomer flow management
罗嗣宏,胡铮.基于分层强化学习的智慧小镇客流管理系统设计[EB/OL].(2023-04-27)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202304-356.点此复制
评论