|国家预印本平台
首页|基于形状约束的快速图像分割方法

基于形状约束的快速图像分割方法

Fast Shape Priors based Image Segmentation Method

中文摘要英文摘要

文中提出一种基于形状约束的快速图像分割算法,该算法首先基于图像矩对齐形状先验,然后利用局部保持映射方法将高维空间中稀疏的形状先验映射到低维子空间,并使用核密度估计方法提取形状先验在低维空间的统计信息,从而构造能量泛函的形状约束项,最后将Chan-Vese模型的能量泛函作为该算法的数据驱动项构造能量泛函。从能量泛函出发推导曲线演化的格子玻尔兹曼方程,通过求解该方程得到能量泛函的极小值,从而完成图像分割。相对于传统的能量泛函求解方法,该方法能够有效减少偏微分方程求解的计算量,大幅度提高图像分割效率。

In this paper, a lattice Boltzmann method solving the energy functional with shape constraint is proposed for image segmentation. Firstly, the proposed algorithm aligns shape priors based on image moments. Secondly, the sparse shape priors in high dimensional space are projected into a low dimensional subspace via the locality preserving projections, and a shape-driven energy term is designed in the low dimensional space by a statistical method, i.e., kernel density estimation. Finally, the lattice Boltzmann evolution equation is deduced from the energy functional that is built by combining the shape-driven term with the data-driven term. The minimum value of the energy function is obtained by evolving of the LBM equation, and finally the image segmentation is accomplished. Compared with the traditional methods of solving the energy functional, this method could reduce the time consumption and improve the efficiency of image segmentation.

丁海刚、牛丽军、王斌

计算技术、计算机技术物理学电子技术应用

图像分割水平集方法形状先验格子玻尔兹曼方法

image segmentationlevel set methodshape priorslattice Boltzmann method

丁海刚,牛丽军,王斌.基于形状约束的快速图像分割方法[EB/OL].(2016-05-26)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201605-1297.点此复制

评论