一种基于Haar-like特征毫米波图像违禁物品自动检测方法
Method Based on Haar-like Features for Millimeter-wave(MMW) Image Contraband Automatic-detection
提出一种基于Haar-like特征结合AdaBoost算法毫米波图像违禁物品检测方法,以解决目前用于人体违禁物品检测毫米波成像违禁物品自动检测识别难的问题。以金属手枪检测为例,扩展了四种半环绕Haar-like特征,通过积分图方法计算矩形特征值,采用AdaBoost算法训练得到强分类器,并利用级联形成的多层分类器对待识别图像进行目标检测。实验结果表明,该方法能较好地从不同毫米波图像中检测出不同大小、不同姿态的金属手枪。文中方法也可以适用于毫米波成像其它违禁物品的自动检测。
method based on Haar-like features for Millimeter-wave(MMW) image contraband detection is proposed to solve the problem that it is hard to auto-detect the contraband hide under the clothes by MMW imaging. Take the metal pistol detection as an example, four half-surround Haar-like featurs are designed. The rectangular eigenvalue are calculated by the integral image method, and the AdaBoost algorithm is adopted to get the strong classifier. The multi-layer classifier which formed by cascade several strong classifiers is used to detect the object. The experimental results indicate that the metal pistol in different size, different angle in MMW image can be recognized well by use this method. Moreover, it is also can be applied to other type MMW contraband detecting.
逯暄、肖泽龙、严江江、胡泰洋、吴礼
雷达
毫米波成像Haar-likedaBoost违禁物品检测
millimeter-wave imagingHaar-likeAdaBoostconcealed object detection
逯暄,肖泽龙,严江江,胡泰洋,吴礼.一种基于Haar-like特征毫米波图像违禁物品自动检测方法[EB/OL].(2013-03-04)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201303-48.点此复制
评论