|国家预印本平台
首页|3d-3d Correspondence and 2d $\mathcal{N}=(0,2)$ Boundary Conditions

3d-3d Correspondence and 2d $\mathcal{N}=(0,2)$ Boundary Conditions

3d-3d Correspondence and 2d $\mathcal{N}=(0,2)$ Boundary Conditions

来源:Arxiv_logoArxiv
英文摘要

We consider quiver forms that appear in the motivic Donaldson-Thomas generating series or characters of conformal field theories and relate them to 3d $\mathcal{N}=2$ theories on $D^2 \times_q S^1$ with certain boundary conditions preserving 2d $\mathcal{N}=(0,2)$ supersymmetry. We apply this to the 3d-3d correspondence and provide a Lagrangian description of 3d $\mathcal{N}=2$ theories $T[M_3]$ with 2d $\mathcal{N}=(0,2)$ boundary conditions for 3-manifolds $M_3$ in several contexts.

Hee-Joong Chung

物理学

Hee-Joong Chung.3d-3d Correspondence and 2d $\mathcal{N}=(0,2)$ Boundary Conditions[EB/OL].(2023-07-19)[2025-07-21].https://arxiv.org/abs/2307.10125.点此复制

评论