|国家预印本平台
首页|卷积神经网络在GPU上的实现

卷积神经网络在GPU上的实现

he realization of the convolutional neural network on GPU

中文摘要英文摘要

卷积神经网络是目前机器学习领域的热点,其在图像识别领域有着广泛的应用。虽然卷积神经网络在各个方面都有不错的表现,但实际运用时不可避免会遇到卷积神经网络运算量过大,运算效率过低的问题。近几年GPU通用并行计算技术得到了飞速的发展,因为其计算核心的数量远远多于CPU,在高度并行的计算问题上,GPU的计算效率要远高于CPU。而最近英伟达公司在其GPU通用计算架构CUDA上推出了深度学习库CUDNN,该库为深度学习中常用的方法提供了接口,使得深度学习算法在GPU上的简易开发成为可能。本文借助CUDNN库,在GPU上实现了卷积神经网络,并测试了其相对于CPU的加速效果。

onvolutional neural network is a hot spot in the field of machine learning. It has been widely used in the field of image recognition. Although convolution neural network has good performance, but when face practical problems, sometimes the calculation scale of the convolutional neural network is too large and computation efficiency is low. In recent years, the general parallel computing technology of GPU has been developed rapidly, because the comput core number of GPU is much more than that of CPU. Therefore, when facing with highly parallel computing problems, the capability of GPU is far beyond the CPU. Recently NVIDIA launch its deep learning library CUDNN base on its general computing architecture of GPU. The library provides interfaces for common operations of deep learning, making it simple to develop deep learning applications on GPU. This paper use CUDNN library to realize the convolutional neural network on GPU, and test the acceleration effect relative to CPU.

陈浩、别红霞

计算技术、计算机技术

卷积神经网络GPU加速UDNN

onvolutional neural networkGPU accelerationCUDNN

陈浩,别红霞.卷积神经网络在GPU上的实现[EB/OL].(2015-11-10)[2025-07-16].http://www.paper.edu.cn/releasepaper/content/201511-140.点此复制

评论