|国家预印本平台
首页|算子半群的Yosida逼近及其在Markov链中的应用

算子半群的Yosida逼近及其在Markov链中的应用

osida Approximation of Semigroups of Linear Operators and Applications to Markov Chains

中文摘要英文摘要

引入强压缩积分算子半群的概念, 对无穷小生成元给出了Lumer-Phillips描述。研究了积分算子半群的 Yosida 逼近,证明了积分算子半群可以表示为一簇一致连续算子半群的积分的极限,由此获得了 积分算子半群的表示公式。作为算子半群在Markov链中的应用,研究了转移概率函数的逼近,得到了转移概率函数逼近的若干$q$--矩阵条件

In this paper, we introduce the notion of strong-contration integrated semigroups and give the Lumer-Phillimps characterization of the generator. We study the Yosida approximtion of integrated semigroups and prove that the integrated semigroup is the convergence of a sequence of integrated uniformly continuous semigroups, and therefore a representation fornulas for integrated semigroup is obtained. As applications to Markov chains, some $q$--matrices condions on the opproximations of transition functions are presented.

赵文强

数学

强连续算子半群强压缩积分算子半群Yosida逼近参数连续Markov链转移概率函数$q$--矩阵

strongly continuous semigroups of linear operatorsstrong-contraction

赵文强.算子半群的Yosida逼近及其在Markov链中的应用[EB/OL].(2007-03-27)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/200703-479.点此复制

评论