基于Fourier 级数和半正定规划求解周期函数的e-全局最优值
Finding e -global optimal value of A one-dimensional Periodic Function In An Interval Based on Fourier Series And Semi-definite Programming
一维全局最优化是一个难问题。本文考虑求解一个一元周期函数f(x)在一个区间D上的e-全局最优值的问题。本文首先用f(x)的Fourier级数的前n项的部分和来近似函数 f(x)。本文表明,预先给定精度e,当n大于某正数的时候,对于任意的x属于区间D,该部分和和f(x)之差的绝对值小于e。本文接着考察求解该部分和在D上的全局最优值。本文表明,这样的一个问题可以通过一系列的转换化为一个半正定规划问题,因此便能用内点法在多项式时间内求解。
One-dimensional global optimization of a function f(x) in an interval D is still a difficult problem. In this paper, we pose a new method for finding the e-global optimal value of f(x) in D . We first approximate the function f(x) via its partial sum of its Fourier series. We show that for given e, we can find a partial sum of its Fourier series such that the absolute value of their difference is less or equal than e for all x in D when n is larger than some positive number N. Then we consider finding the e -global optimal value of this partial sum, which turns out to be able to be converted into a semi-definite programming problem via some transformation, hence is able to be solved by interior point method in polynomial time.
孙楚仁
数学
一维全局最优化Fourier级数半正定规划e-全局最优值
One-dimensional Global optimizationFourier seriesPartial sum approximationSemi-definite programminge-global optimal value
孙楚仁.基于Fourier 级数和半正定规划求解周期函数的e-全局最优值[EB/OL].(2005-05-16)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/200505-67.点此复制
评论