|国家预印本平台
首页|融合基于注意力机制的span特定和上下文语义表示的基于span的实体和关系联合抽取

融合基于注意力机制的span特定和上下文语义表示的基于span的实体和关系联合抽取

Span-based Joint Entity and Relation Extraction with Attention-based Span-specific and Contextual Semantic Representations

中文摘要英文摘要

基于span的联合提取模型已显示出它们在实体识别和关系提取上的效率。 这些模型将文本span视为候选实体,并将span元组视为候选关系元组。 span语义表示在实体识别和关系提取中都是共享的,而现有模型无法很好地捕获这些候选实体和关系的语义。 为了解决这些问题,我们引入了基于span的联合提取框架和基于注意的语义表示。 特别地,注意力用于计算语义表示,包括span特定和上下文表示。 我们将进一步研究四种注意变量在生成上下文语义表示中的作用。 实验表明,我们的模型优于以前的系统,并在ACE2005,CoNLL2004和ADE上达到了最优的结果。

Span-based joint extraction models have shown their efficiency on entity recognition and relation extraction. These models regard text spans as candidate entities and span tuples as candidate relation tuples. Span semantic representations are shared in both entity recognition and relation extraction, while existing models cannot well capture semantics of these candidate entities and relations. To address these problems, we introduce a span-based joint extraction framework with attention-based semantic representations. Specially, attentions are utilized to calculate semantic representations, including span-specific and contextual ones. We further investigate effects of four attention variants in generating contextual semantic representations. Experiments show that our model outperforms previous systems and achieves state-of-the-art results on ACE2005, CoNLL2004 and ADE.

10.12074/202010.00067V1

计算技术、计算机技术

实体关系联合抽取注意力机制上下文语义表示

Joint entity and relation extractionattention mechanismcontextual semantic representation

.融合基于注意力机制的span特定和上下文语义表示的基于span的实体和关系联合抽取[EB/OL].(2020-10-26)[2025-08-06].https://chinaxiv.org/abs/202010.00067.点此复制

评论