|国家预印本平台
首页|Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition

Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition

Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition

来源:Arxiv_logoArxiv
英文摘要

We analyze the dynamics of entanglement entropy in a generic quantum many-body open system from the perspective of quantum information and error corrections. We introduce a random unitary circuit model with intermittent projective measurements, in which the degree of information scrambling by the unitary and the rate of projective measurements are independently controlled. This model displays two stable phases, characterized by the volume-law and area-law scaling entanglement entropy in steady states. The transition between the two phases is understood from the point of view of quantum error correction: the chaotic unitary evolution protects quantum information from projective measurements that act as errors. A phase transition occurs when the rate of errors exceeds a threshold that depends on the degree of information scrambling. We confirm these results using numerical simulations and obtain the phase diagram of our model. Our work shows that information scrambling plays a crucial role in understanding the dynamics of entanglement in an open quantum system and relates the entanglement phase transition to changes in quantum channel capacity.

Xiao-Liang Qi、Yimu Bao、Soonwon Choi、Ehud Altman

10.1103/PhysRevLett.125.030505

物理学

Xiao-Liang Qi,Yimu Bao,Soonwon Choi,Ehud Altman.Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition[EB/OL].(2019-03-12)[2025-07-16].https://arxiv.org/abs/1903.05124.点此复制

评论