|国家预印本平台
首页|Quantum Chemistry Simulations of Dominant Products in Lithium-Sulfur Batteries

Quantum Chemistry Simulations of Dominant Products in Lithium-Sulfur Batteries

Quantum Chemistry Simulations of Dominant Products in Lithium-Sulfur Batteries

来源:Arxiv_logoArxiv
英文摘要

Quantum chemistry simulations of some industrially relevant molecules are reported, employing variational quantum algorithms for near-term quantum devices. The energies and dipole moments are calculated along the dissociation curves for lithium hydride (LiH), hydrogen sulfide, lithium hydrogen sulfide and lithium sulfide. In all cases we focus on the breaking of a single bond, to obtain information about the stability of the molecular species being investigated. We calculate energies and a variety of electrostatic properties of these molecules using classical simulators of quantum devices, with up to 21 qubits for lithium sulfide. Moreover, we calculate the ground-state energy and dipole moment along the dissociation pathway of LiH using IBM quantum devices. This is the first example, to the best of our knowledge, of dipole moment calculations being performed on quantum hardware.

Joe Latone、Mario Motta、Jeannette M. Garcia、Tyler Y. Takeshita、Tanvi P. Gujarati、Andreas Hintennach、Julia E. Rice

10.1063/5.0044068

化学物理学电化学工业

Joe Latone,Mario Motta,Jeannette M. Garcia,Tyler Y. Takeshita,Tanvi P. Gujarati,Andreas Hintennach,Julia E. Rice.Quantum Chemistry Simulations of Dominant Products in Lithium-Sulfur Batteries[EB/OL].(2020-01-04)[2025-07-16].https://arxiv.org/abs/2001.01120.点此复制

评论