基于显著性和视觉词典的图像分类算法研究
Image classfication based on saliency detection and visual vocabulary
本文针对盲图像无任何先验信息,必须依靠人的视觉感知特性来指导分类,提出了一种基于显著性和视觉词典的图像分类算法。首先对自然图像提取其显著性区域;其次对显著性区域进行SURF特征的提取;然后构造关于显著性的视觉词典;最后利用1范数支持向量机的稀疏性进行图像分类。实验结果显示本文提出的算法能够获得较好的分类效果。
In this paper,an image classification algorithm is proposed to deal with the blind image classification, which means the content of image is unknown, but the classification task could be guided by human visual perception. Firstly, the salient regions will be extracted from natural images; then compute the SURF features of the salient region; thirdly build up the visual vocabulary of the salient region; the classification could be worked out by 1-norm SVM' s sparse property. The experimental results show that the efficiency and effectiveness of the presented approach.
赵雪、温静
计算技术、计算机技术电子技术应用
图像分类GISTSURF显著性分割多示例学习
Image classificationGISTSURFSalient segmentationMultiple instance learning
赵雪,温静.基于显著性和视觉词典的图像分类算法研究[EB/OL].(2016-06-13)[2025-05-19].http://www.paper.edu.cn/releasepaper/content/201606-615.点此复制
评论