|国家预印本平台
首页|基于改进退化隐马尔科夫模型的设备健康诊断与寿命预测研究

基于改进退化隐马尔科夫模型的设备健康诊断与寿命预测研究

中文摘要英文摘要

针对隐马尔科夫模型在进行设备健康诊断时与实际存在较大偏差的问题,提出了一种以似幂关系加速退化为核心的改进退化隐马尔科夫模型(DGHMM)。首先,引入退化因子描述设备衰退过程,提出的似幂关系加速退化较常规指数式加速退化而言,能更好地描述设备服役期间随着役龄增加性能的逐步下降。其次,以全局搜索能力相对较强的改进遗传算法代替常规EM算法进行参数估计,克服了EM算法易陷入局部最优的局限性。同时,针对隐马尔科夫模型时间上须服从指数分布而不能直接用以寿命预测的局限性问题,提出了一种以近似算法与Viterbi算法为基础的贪婪近似法,以寻求最大概率剩余观测为目的,动态地寻求最大概率剩余状态路径,对设备剩余寿命进行预测。最后,通过美国卡特彼勒公司液压泵数据集对所提出的方法进行验证评价。结果表明,基于改进退化隐马尔科模型的设备健康诊断与寿命预测方法在描绘设备退化、设备状态诊断准确率方面更加有效,在剩余寿命预测上亦为可行。

In order to solve the problem of large deviation between Hidden Markov Model and actual equipment health diagnosis, this paper developed an improved Degenerated Hidden Markov Model (DGHMM) with a core of the quasi power relation. First, the model adopted the degradation factors, modeling the process of recession for the equipments continuous decrease in performance. Compared with the conventional exponential accelerated degradation, the quasi power relation accelerated degradation can better describe the process that the performance of the equipment decreases gradually with the increase of service age. Then, the improved genetic algorithm can replace the conventional EM algorithm for parameters estimation, which overcomes the limitation that the EM algorithm is easy to fall into local optimization. At the same time, in terms of the limitation of life prediction problem as a result of the Hidden Markov Model must obey exponential distribution, an algorithm named greed & approximation based on approximation algorithm and Viterbi algorithm came out, and to seek maximum probability remaining observation, for the purpose of seeking maximum probability dynamically surplus state path, to predict the residual life of equipment. Finally, the proposed method is validated and evaluated with the data set of caterpillar hydraulic pumps. The results show that the method of equipment health diagnosis and life prediction based on the improved degraded hidden Markov model is more effective in describing equipments degeneration and the accuracy of equipment state diagnosis, and is also feasible in the prediction of residual life.

李冠林、叶春明、刘文溢、刘勤明

10.12074/202009.00081V1

机械运行、机械维修计算技术、计算机技术自动化技术、自动化技术设备

隐马尔科夫模型设备退化健康诊断剩余寿命预测遗传算法近似算法

李冠林,叶春明,刘文溢,刘勤明.基于改进退化隐马尔科夫模型的设备健康诊断与寿命预测研究[EB/OL].(2020-09-28)[2025-08-18].https://chinaxiv.org/abs/202009.00081.点此复制

评论