|国家预印本平台
首页|基于最小二乘模糊支持向量机的基因分类研究

基于最小二乘模糊支持向量机的基因分类研究

lassification Of Genes Based on Least Squares Fuzzy Support Vector Machines

中文摘要英文摘要

随着大量基因表达数据的涌现,如何处理和分析这些数据并从中提取出有价值的生物学信息成为一个极为重要的课题。基因分类是进行基因数据处理的常用方法。本文提出了一种新的基于模糊最小二乘支持向量机方法。通过设置模糊隶属度改变分类中样本的贡献属性,该方法不仅考虑了样本与类中心点的距离关系,还充分考虑样本与样本之间的关系,减弱噪声或野值样本对分类的影响。采用美国威斯康星乳腺癌数据和皮马印第安人糖尿病数据进行实验检测,均取得了很好的效果。

With the large number of gene expression data araise, how to analyze these data and extract valuable biological information has become an extremely important issue, and it is a revolutionary change for the prediction and treatment of cancer .Gene classification is a commonly used method for gene expression data processing.A new fuzzy Least square SVM is proposed. The contribution of each sample is defined by setting the fuzzy memberships.By considering the distance not only between the types of samples and the center of classification but also between the samples and samples,noises and outliers are removed.At the same time,the performance of the proposed method on randomly generated data and the United States Wisconsin Breast Cancer Database (WDBC) data is reported to illustrate its effctiveness.

骆嘉伟、苏涵沐、陈涛

生物科学研究方法、生物科学研究技术计算技术、计算机技术

基因微阵列隶属度函数模糊支持向量机基因分类

Gene MicroarrayMembershipFunctionFuzzySupport Vector MachinesGene Classification

骆嘉伟,苏涵沐,陈涛.基于最小二乘模糊支持向量机的基因分类研究[EB/OL].(2009-05-07)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200905-166.点此复制

评论