基于成对约束的稀疏嵌入遥感影像降维
Sparsity Preserving Based on Pair-wise Constraints for Dimensionality Reduction of Remote Sensing Image
针对高光谱影像数据量巨大,且标记样本极少的问题,考虑采用成对约束(即正负约束对)对样本进行标注,提出基于成对约束的稀疏嵌入降维算法。成对约束信息的优点在于具有更好分类性能和简易获取的特性。而稀疏保持投影属于无监督降维,样本自身的监督信息没有得到充分利用。因此,通过引入正约束对和负约束对监督信息来指导稀疏重构,将两者有效地融合在一起,即构建正约束和负约束矩阵作为稀疏重构的权重,以提高分类效果。在遥感影像数据集上进行的实验验证了所提方法的可行性和有效性。
iming at the huge amount of remote sensing data with little labeled samples, a novel dimensionality reduction approach is introduced, which is named sparsity preserving with pair-wise constraints for dimensionality reduction.It considers labeling samples by the use of positive and negative constraints. Pair-wise constraints take an advantage of having a better classification performance and being easy to get them. Sparse preserving projection belongs to unsupervised dimensionality reduction, so the samples' supervised information is not fully utilized. Therefore, the algorithm introduces positive constraints and negative constraints to guide sparse reconstruction. The both will be effectively fused, namely using positive constraints and negative constraints as the supervision of information to guide sparse reconstructed for improving the classification effect. The results on remote sensing datasets verify the feasibility and validity of the proposed methods.
王雪松、白亚腾、刘卫东、程玉虎、汪敏
遥感技术
关稀疏表示降维成对约束遥感影像
Sparse representationDimensionality reductionPair-wise constraintsRemote sensing image
王雪松,白亚腾,刘卫东,程玉虎,汪敏.基于成对约束的稀疏嵌入遥感影像降维[EB/OL].(2014-05-02)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201405-27.点此复制
评论