流体和等离子体中非等谱变系数KdV方程的Wronskian解
Wronskian solutions for a nonisospectral variable-coefficient Korteweg-de Vries equation in fluids and plasmas
浅水波、等离子体中的离子声波、晶格动力学等领域常会推导出KdV类型方程。本文用Wronskian技术研究了一个在不均匀介质中考虑松弛效应后得到的非等谱变系数KdV方程。基于Schrodinger谱问题的不同特征值构造和验证了多孤子、正子、负子解。根据波数的相对大小,展示了不同的孤子相互作用结构,如拟弹性相互作用、粘连结构、拟孤子分裂/融合等。
Korteweg-de Vries (KdV)-type equations appear in the shallow waterwaves, ion-acoustic waves in plasmas, lattice dynamics and so on. Inthis paper, the Wronskian technique is applied to investigate anonisospectral variable-coefficient KdV equation in certainnonuniform media with the relaxation effect. Multi-soliton andmulti-positon/negaton solutions for such equation are constructedand verified corresponding to the different eigenvalues of theSchrodinger spectral problem. Based on the relevant magnitude ofthe wave numbers, the solitonic interaction, such as the quasielastic interaction, coherent structure and fission/fusion, areshown graphically.
高以天、孙志远、盖晓玲、于鑫
数学物理学
流体和等离子体中非等谱变系数KdV方程朗斯基行列式孤子正子负子符号计算
Nonisospectral variable-coefficient Korteweg-de Vries equation in fluids and plasmasWronskianSolitonPositonNegatonSymbolic computation
高以天,孙志远,盖晓玲,于鑫.流体和等离子体中非等谱变系数KdV方程的Wronskian解[EB/OL].(2012-04-26)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201204-361.点此复制
评论