|国家预印本平台
首页|基于困难姿态图嵌入的人物交互检测

基于困难姿态图嵌入的人物交互检测

Hard Posture-aware Graph Embedding for Human-Object Interaction Detection

中文摘要英文摘要

检测人与物体的交互是更深入的视觉理解的基础。最近的工作主要集中在人体姿态的输入和图神经网络的设计上,在性能上取得了进展。然而,这些方法不能适应困难的姿态输入,这限制了其进一步发展。为了解决这个问题,本文提出了一种困难姿态图嵌入~(HPGE)管线,它首先使用姿态聚合网络~(PAN)对姿态特征进行编码,然后使用特征门控~(FG)和姿态组件增强~(PCAug)建模困难的姿态输入。FG设计了一个开关变量控制与人体特征和姿态特征的连接,当姿态不可靠时关闭与姿态特征的连接;PCAug基于具有高斯分布的姿态分量框的方差进一步挖掘姿态分量特征的潜力。本文在最近的两个人物交互数据集V-COCO和HICO-DET上对提出的方法进行了评估,实验结果表明,提出的FG和PCAug方法对比平凡的基线结果提升了性能,具备这些方法的HPGE可以达到主流人物交互检测方法的水平。此外,本文还对HPGE进行了消融研究、参数分析和模型可视化。

etecting Human-object Interaction~(HOI) is foundamental for deeper visual understanding. Recent work has focused on the input of human pose and the design of graph neural network, and progress has been made in performance. However, these methods cannot adapt to the difficult pose input, which restricts the further development on them. To tackle this problem, this paper proposes a Hard Pose-aware Graph Embedding (HPGE) pipeline, which first encodes the pose features with a Pose Aggregation Network (PAN), and then models the difficult pose input with the proposed Feature Gate (FG) and Pose Component Augmentation (PCAug). FG designs a switch gate controlling the connection with human feature and pose feature, and closes the connection with pose features when the pose input cannot be relied; PCAug further exploits the potential of pose component features basing on the variance of pose component boxes with Gaussian distribution. The paper evaluates the proposed method on two recent datasets V-COCO and HICO-DET, and the experimental results show that the proposed FG and PCAug method improve the performance compared to the vanilla baseline, and with these methods HPGE can achieve the level of mainstream human-object interaction detection methods. Moreover, the paper also conducts ablation study, parameter analysis and model visualization of the HPGE pipeline.

邓伟洪、范弘炜

计算技术、计算机技术

人工智能 人物交互 图网络 姿态估计

artificial intelligence human-object interaction graph network pose estimation

邓伟洪,范弘炜.基于困难姿态图嵌入的人物交互检测[EB/OL].(2022-03-21)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/202203-277.点此复制

评论