用小波变换和神经网络来识别表面肌电信号的情感状态
Emotion Recognition from Surface EMG Signal Using Wavelet Transform and Neural Network
情感识别是情感计算的一个关键问题。针对表面肌电信号(EMG)的非平稳性,采用小波变换方法对表面肌电信号进行分析,提取小波系数最大值和最小值构造特征矢量输入用Levenberg-Marquardt (L-M)算法改进的BP神经网络分类器进行情感状态识别。实验表明,用表面肌电信号对joy、anger、sadness、pleasure四种情感识别效果较好。也说明用小波变换方法提取特征,用神经网络作分类器的方法用于情感识别有很大的应用前景。
Emotion recognition is a pivotal question of affective computing. This paper adopts the wavelet transform to analyse the surface EMG signal instability feature. Surface EMG signal is decomposed by discrete wavelet transform (DWT) and selected maximum and minimum of the wavelet coefficients in every level. The extracted maximum and minimum of the wavelet coefficients is inputted to identify emotion by the BP neural network improved by Levenberg-Marquardt algorithm. Experimental result shows that identification purpose of four emotional signals (joy, anger, sadness and pleasure) is effective and have are a great potential in practical application of emotion recognition.
程波、刘光远
生物科学现状、生物科学发展生物科学研究方法、生物科学研究技术计算技术、计算机技术
情感计算情感识别小波变换BP网络EMG
ffective Computing
程波,刘光远.用小波变换和神经网络来识别表面肌电信号的情感状态[EB/OL].(2007-06-14)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/200706-289.点此复制
评论